

ITU-T SG17 메타버스 보안 표준화 동향 및 주요 이슈

2025. 9. 16.

나 재 훈

목 차

- ITU-T SG17 구조 및 리더쉽 소개
- ITU-T SG17 메타버스 및 디지털트윈 보안 표준 동향
- 주요 이슈
- Q&A

ITU-T SG17 Structure & leadership

Chair: Arnaud Taddei

Working Party	Questions	Title	Leadership
WP1/17	Q10/17, Q11/17, Q15/17	Digital identity, Quantum based security, PKI and Fundamental security technologies	Chair: Ms Debora COMPARIN Vice-chairs: Ms Honey MAKOLA Ms Afnan ALROMI
WP2/17	Q2/17, Q6/17, Q13/17	Security of IMT, IoT, metaverse and ITS/CAV	Chair: Mr Bret JORDAN Vice-chairs: Mr Yutaka MIYAKE
WP3/17	Q1/17, Q3/17, Q4/17	Cybersecurity and management, security strategy and coordination	Chair: Mr Chang-Oh KIM Vice-chairs: Mr Mahmut ESAT YILDIRIM Ms Xiaoyan BAI
WP4/17	Q7/17, Q8/17, Q14/17	Security of AI, cloud computing serv ices and applications	Chair: Ms Zhiyuan HU Vice-chair: Mr Jae Hoon NAH

목 차

- ITU-T SG17 구조 및 리더쉽 소개
- ITU-T SG17 메타버스 및 디지털 트윈 보안 표준 동향
- 주요 이슈
- Q&A

Work item	Question	Subject / Title	Status
X.dtns	Q4/17	Guidelines of using digital twin of network for security	Under study
X.2012 (ex X.smdtsc)	Q7/17	Security measures for digital twin system of smart city	Approved (2024-10-29)
X.2013 (ex X.smdtf)	Q7/17	Security measures for digital twin federation of smart city	Approved (2025-05-29)
X.fr-vsasi	Q7/17	Functional requirements for visualization service in AI security digital twin	Under study

X.dtns, Guidelines of using digital twin of network for security

Background, Necessity, and Objectives

- Digital twin networks simulate real networks for testing security
- Useful for strategy validation, risk deduction, and resilience
- Guidelines required to ensure interoperability and reliability

- Define functional requirements of visualization services
- Provide reference architecture for visualization of security assets/incide nts
- Enhance efficiency and accuracy of network security management

X.2012[X.smdtsc], Security measures for digital twin system of smart cities

Background, Necessity, and Objectives

- Smart city digital twins improve operations and resilience
- Multiple system layers face security threats in data and interfaces
- Security measures required for reliable urban management

- Identify security threats of smart city digital twin systems
- Define security requirements across system layers
- Establish technical and management measures for protection

X.2013(X.smdtf), Security measures for digital twin federation in smart cities and communities

- Background, Necessity, and Objectives
 - Cross-domain digital twins enable collaborative smart city services
 - Security risks include DoS, malicious data sharing, and tampering
 - Federation-wide safeguards are necessary for stable operations
- Scope
 - Describe threats in digital twin federation (e.g., DoS, tampering)
 - Analyze security requirements for federated environments
 - Provide countermeasures and technical safeguards

X.fr-vsasi, Functional requirements for visualization of network security assets and incidents using digital twin

- Background, Necessity, and Objectives
 - Visualization enhances efficiency and accuracy in incident response
 - Current systems suffer from incomplete and inconsistent data
 - Functional architecture needed for digital twin-based visualization

- Define functional requirements of visualization services
- Provide reference architecture for visualization of security assets/incide nts
- Enhance efficiency and accuracy of network security management

Work item	Question	Subject / Title	Status
TR.cr-mv	Q6/17	Technical Report: Cyber risks, threats	Under study
TR.trust-metaverse	Q6/17	Technical Report: Technical challenges to achieve trust in metaverse	Under study
X.sg-eimv	Q6/17	Security guidelines for enabling integration of identity management across metaverse environments	Under study
X.stm-dpm	Q6/17	Security for things across metaverses in aspect of digital property management	Under study
TR.dpama	Q7/17	Technical Report on "A Landscape analysis for metaverse applications and security"	Under study
X.AA-LLM	Q7/17	Guidelines for Preventing and Mitigating Adverse Attacks in LLM-based metaverse applications (간접 포함)	Under study

TR.cr-mv, Cybersecurity risks, threats, and harms in the metaverse

Background, Necessity, and Objectives

- Metaverse expansion introduces new and amplified cybersecurity risks
- Potential harms include data theft, NFT manipulation, and financial loss
- Essential to build baseline knowledge for secure metaverse adoption

- Identify cybersecurity risks, threats, and harms in metaverse environments
- Analyze potential financial, reputational, and operational impacts
- Provide baseline understanding for further standardization on metaverse security

TR.trust-metaverse, Technical challenges to achieving trustworthy metaverses

Background, Necessity, and Objectives

- Metaverse relies on AI, blockchain, AR/VR, and IoT integration
- Safety, privacy, and identity management are critical challenges
- Trustworthiness is key for sustainable metaverse development

- Define features of trustworthy metaverses
- Identify technical challenges in building reliability, safety, and privacy
- Propose framework for trust-oriented metaverse standardization

X.sg-elmv, Security guidelines for integrating virtual and physical worlds of the metaverse in smart city

Background, Necessity, and Objectives

- Integration of metaverse and physical infrastructure offers new value
- Risks include data tampering, forged control signals, and unauthorized access
- Guidelines required to safeguard integration enablers in smart cities

- Analyze risk sources of integration enablers in smart cities
- Define specific security requirements for integration scenarios
- Provide security measures for safe virtual-physical integration

X.stm-dpm, Security for things across metaverses in relation to data processing and management

Background, Necessity, and Objectives

- IoT devices mapped into multiple metaverses create complex data flows
- Risks arise in lifecycle management, external storage, and access control
- Framework needed for secure multi-metaverse data management

- Analyze data processing and management issues for IoT in metaverses
- Define security requirements for data lifecycle, encryption, and access
- Provide security frameworks for multi-metaverse interoperability

TR.dpama, Data protection of avatars in metaverse applications

- Background, Necessity, and Objectives
 - Avatars hold sensitive personal and behavioral information
 - Privacy breaches may undermine user trust and system adoption
 - Standardization needed to protect avatar data across platforms

- Analyze data types and threats associated with avatars
- Review current standards and technologies for avatar data protection
- Recommend standardization activities for secure avatar interactions

X.AA-LLM, Guidelines for preventing adversarial attacks on LLMs in metaverse and digital twin environments

Background, Necessity, and Objectives

- LLMs enable natural interaction in metaverse and digital twins
- Adversarial attacks (prompt hacking, poisoning) pose high risks
- Guidelines needed to secure LLMs in critical immersive applications

- Identify adversarial attack vectors against LLMs
- Develop prevention and mitigation strategies
- Ensure robustness and trustworthiness of LLM applications in immersive systems

목 차

- ITU-T SG17 구조 및 리더쉽 소개
- ITU-T SG17 메타버스 및 디지털트윈 보안 표준 동향
- 주요 이슈
- Q&A

주요 이슈

- AI·메타버스·디지털트윈 보안
 - AI 보안: LLM 공격 대응(X.AA-LLM), AI 기반 서비스 위협 완화,
 시각화 서비스 요구사항(X.fr-vsasi)
 - 메타버스 보안: 신뢰 확보(TR.trust-metaverse), 사이버 리스크 분석(TR.cr-mv), 메타버스 내 디지털 자산 관리(X.stm-dpm)
 - 디지털 트윈 보안: 네트워크 DT(X.dtns), 스마트시티 DT 보안 (X.2012, X.2013), DT 연합 보안
 - ❖ 중점사항: 차세대 가상환경(AI+Metaverse+Digital Twin)의 위협 모델, 신뢰성, 데이터/자산 보호

주요 이슈

- 향후 주제
 - Agentic AI 보안
 - Privacy-preserving Al
 - ZKML, FHE, Differential Privacy 기반 AI 보안 급성장
 - Cross-Domain Digital Twin security 확장
 - 스마트시티에 편중
 - 에너지, 헬스케어, 교통, 제조
 - 전자지갑 → CBDC, 토큰화, 자산, 스테이블코인
 - AI기반 자율 보안
 - Al-powered 공격

Q&A

